Auxin regulation of embryonic root formation.

نویسندگان

  • Saiko Yoshida
  • Shunsuke Saiga
  • Dolf Weijers
چکیده

The plant hormone auxin was initially identified as the bioactive substance that induces roots in plant tissue culture. In the past decades, mechanisms for auxin action, including its transport and response, have been described in detail. However, a molecular and cellular description of its role in root initiation is far from complete. In this review, we discuss recent advances in our understanding of auxin-dependent embryonic root formation. During this process, a root meristem is initiated in a precise and predictable position, and at a stage when the organism consists of relatively few cells. Recent studies have revealed mechanisms for local control of auxin transport, for cellular differences in auxin response components and cell type-specific chromatin regulation. The recent identification of biologically relevant target genes for auxin regulation during embryonic root initiation now also allows dissection of auxin-activated cellular processes. Finally, we discuss the potential for hormonal cross-regulation in embryonic root formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Endogenous Auxin Levels in Plant Root Development

In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branch...

متن کامل

Dev115832 702..711

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used...

متن کامل

Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis

Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apica...

متن کامل

The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana.

BACKGROUND AND AIMS The root meristem of the Arabidopsis thaliana mature embryo is a highly organized structure in which individual cell shape and size must be regulated in co-ordination with the surrounding cells. The objective of this study was to determine the role of the AUX1 LAX family of auxin import carriers during the establishment of the embryonic root cell pattern. METHODS The radic...

متن کامل

Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development

Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2013